Synchronization Points and Associated Dynamical Invariants
نویسنده
چکیده
This paper introduces new invariants for multiparameter dynamical systems. This is done by counting the number of points whose orbits intersect at time n under simultaneous iteration of finitely many endomorphisms. We call these points synchronization points. The resulting sequences of counts together with generating functions and growth rates are subsequently investigated for homeomorphisms of compact metric spaces, toral automorphisms and compact abelian group epimorphisms. Synchronization points are also used to generate invariant measures and the distribution properties of these are analysed for the algebraic systems considered. Furthermore, these systems reveal strong connections between the new invariants and problems of active interest in number theory, relating to heights and greatest common divisors.
منابع مشابه
Dynamical behavior and synchronization of chaotic chemical reactors model
In this paper, we discuss the dynamical properties of a chemical reactor model including Lyapunov exponents, bifurcation, stability of equilibrium and chaotic attractors as well as necessary conditions for this system to generate chaos. We study the synchronization of chemical reactors model via sliding mode control scheme. The stability of proposed method is proved by Barbalate’s lemma. Numeri...
متن کاملDynamical behavior and synchronization of hyperchaotic complex T-system
In this paper, we introduce a new hyperchaotic complex T-system. This system has complex nonlinear behavior which we study its dynamical properties including invariance, equilibria and their stability, Lyapunov exponents, bifurcation, chaotic behavior and chaotic attractors as well as necessary conditions for this system to generate chaos. We discuss the synchronization with certain and uncerta...
متن کاملSynchronization analysis of complex dynamical networks with hybrid coupling with application to Chua’s circuit
Complex dynamic networks have been considered by researchers for their applications in modeling and analyzing many engineering issues. These networks are composed of interconnected nodes and exhibit complex behaviors that are resulted from interactions between these nodes. Synchronization, which is the concept of coordinated behavior between nodes, is the most interested behavior in these netwo...
متن کاملSynchronization criteria for T-S fuzzy singular complex dynamical networks with Markovian jumping parameters and mixed time-varying delays using pinning control
In this paper, we are discuss about the issue of synchronization for singular complex dynamical networks with Markovian jumping parameters and additive time-varying delays through pinning control by Takagi-Sugeno (T-S) fuzzy theory.The complex dynamical systems consist of m nodes and the systems switch from one mode to another, a Markovian chain with glorious transition probabili...
متن کاملConditional exponents, entropies and a measure of dynamical self-organization
In dynamical systems composed of interacting parts, conditional exponents, conditional exponent entropies and cylindrical entropies are shown to be well defined ergodic invariants which characterize the dynamical selforganization and statitical independence of the constituent parts. An example of interacting Bernoulli units is used to illustrate the nature of these invariants. 1 Conditional exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012